Thursday, March 24, 2016

Pengertian Automatic Speech Recognition (ASR), Fungsi dan Perkembangannya


Pengertian Speech Recognition (ASR)
Dikenal juga dengan pengenal suara otomatis (automatic speech recognition) atau pengenal suara komputer (computer speech recognition). Merupakan salah satu fitur antarmuka telematika yang merubah suara menjadi tulisan (hebat, padahal kalo lagi di dikte sama dosen juga kita bisa ngubah suara jadi tulisan). Istilah ‘voice recognition’ terkadang digunakan untuk menunjuk ke speech recognition dimana sistem pengenal dilatih untuk menjadi pembicara istimewa, seperti pada kasus perangkat lunak untuk komputer pribadi, oleh karena itu disana terdapat aspek dari pengenal pembicara, dimana digunakan untuk mengenali siapa orang yang berbicara, untuk mengenali lebih baik apa yang orang itu bicarakan. Speech recognition merupakan istilah masukan yang berarti dapat mengartikan pembicaraan siapa saja.
rikyta.blogspot.com
Speech recognition atau pengenalan pembicaraan (juga dikenal sebagai pengenalan suara otomatis atau pengakuan komputer pidato) mengkonversi diucapkan kata-kata untuk teks. The "pengenalan suara" istilah kadang-kadang digunakan untuk merujuk kepada sistem pengakuan yang harus dilatih untuk kasus-speaker tertentu seperti untuk perangkat lunak pengenal yang paling desktop.Menyadari pembicara dapat menyederhanakan tugas menerjemahkan pidato. Pengenalan pembicaraan adalah solusi yang lebih luas yang mengacu pada teknologi yang dapat mengenali pidato tanpa ditargetkan pada pembicara tunggal seperti sistem call center yang dapat mengenali suara sewenang-wenang.

Aplikasi pengenalan pembicaraan termasuk user interface seperti suara panggilan suara (misalnya, "Call home"), call routing (misalnya, "Saya ingin membuat collect call"), kontrol alat domotic, pencarian (misalnya, menemukan podcast di mana tertentu Kata-kata itu diucapkan), sederhana entri data (misalnya, memasukkan nomor kartu kredit), persiapan dokumen terstruktur (misalnya, sebuah laporan radiologi), pengolahan pidato-ke-teks (misalnya, kata prosesor atau email), dan pesawat udara (biasanya disebutInput langsung suara).
Secara umum, speech recognizer memproses sinyal suara yang masuk dan menyimpannya dalam bentuk digital. Hasil proses digitalisasi tersebut kemudian dikonversi dalam bentuk spektrum suara yang akan dianalisa dengan membandingkan dengan template suara pada database sistem. Sebelumnya, data suara masukan dipilah-pilah dan diproses satu per satu berdasarkan urutannya. Pemilahan ini dilakukan agar proses analisis dapat dilakukan secara paralel.
 
 
Fungsi Automatic Speech Recognation (ASR)
Voice Recognition adalah suatu sistem yang dapat mengidentifikasi seseorang melalui suaranya, pada saat saya mencari pengertiaan dari voice recognition terdapat juga pengertian Speech Recognition yang hampir sama secara fungsinya. Tapi terdapat perbedaan antara keduanya, Voice Recognition mengidentifikasi siapa yang berbicara, tetapi Speech Recognition mengidentifikasi apa yang diucapkan.

Voice recognition dibagi menjadi dua jenis, yaitu :

• Speech recognition : merupakan proses yang dilakukan computer untuk identifikasi suara yang diucapkan oleh seseorang tanpa mempedulikan identitas orang terkait. Implementasi speech recognition misalnya perintah suara untuk menjalankan aplikasi komputer. Parameter yang dibandingkan ialah tingkat penekanan suara yang kemudian akan dicocokkan dengan template database yang tersedia.

• Speaker recognition : Merupakan sistem pengenalan identitas yang diklaim oleh seseorang dari suaranya atau berdasarkan orang yang berbicara. Misalnya berupa intonasi suara, tingkat kedalaman suara, dan sebagainya. Speech recognition juga dikenal sebagai automatic speech recognition atau computer speech recognition yaitu penerjemah perkataan yang diucapkan menjadi text. Teknologi speech recognition ini sudah ada sejak lama dan sekarang banyak sekali jenis aplikasi yang dikembangkan menggunakan teknologi ini.



Perkembangan alat pengenal ucapan
Speech recognition pertama kali muncul di tahun 1952 dan terdiri dari device untuk pengenalan satu digit kata yang diucapkan. Kemudian pada tahun 1964, muncul IBM Shoebox, salah satu teknologi yang cukup terkenal di Amerika dalam bidang kesehatan adalah Medical Transcriptionist (MT) merupakan aplikasi komersial yang menggunakan speech recognition. Dan sampai sekarang banyak aplikasi yang dikembangkan menggunakan speech recognizer, antara lain di bidang kesehatan terdapat MT, di bidang militer terdapat High-performance fighter aircraft, Training air traffic controllers, sampai pada alat yang membantu orang-orang yang memiliki kesulitan dalam menggunakan tangan, maka diciptakannya komputer yang dapat dioperasikan menggunakan deteksi pengucapan user.


Sebenarnya ada dua pemodelan dasar untuk speech recognition ini yaitu :
• Hidden Markov model (HMM)-based speech recognition
• Dynamic time warping (DTW)- based speech recognition.

Modern general-purpose speech recognition system umumnya menggunakan model Hidden Markov. Model ini merupakan model yang statistikal dimana output adalah sekuens dari simbol atau kuantitas. Alasan menggunakan model Hidden Markov karena sebuah sinyal dari pengucapan bisa dilihat seperti piecewise stationary signal atau short-time stationary signal. Metode ini sangat populer, sederhana dan secara komputasional bisa digunakan.pada Dynamic time warping yang merupakan pendekatan yang pernah digunakan untuk speech recognition yang sekarang sudah digantikan oleh modelHidden Markov.

Pada pengembangannya, speech recognizer diimplementasikan menggunakan Dynamic Time Wraping Algorithm (DTW) yang digunakan untuk menerjemahkan perkataan yang membutuhkan perbandingan antara sinyal masuk dari kata dan bermacam-macam kata yang ada di dalam kamus dengan mengukur kesamaan antara dua sekuensial pada waktu yang berbeda baik dari segi kecepatannya. Algoritma DTW diimplementasikan pada video, audio, dan grafik dan tentu saja data-data bisa diubah ke dalam bentuk representasi linear yang bisa dianalisis oleh DTW.DTW pertama kali dikenalkan pada tahun 1960an dan dieksplorasi sampai tahun 70an yang menghasilkan alat speech recognizer.

DTW sering digunakan dalam area :

· handwriting and online signature matching,
· sign language recognition and gestures recognition,
· mining and time series clustering,
· computer vision and computer animation,
· surveillance,
· protein sequence alignment and chemical engineering,
· music and signal processing.
 
 
Automatic Speech Recognition
Automatic Speech Recognition (ASR) sekarang ini telah banyak dikembangkan dalam berbagai penelitian. Terdapat bermacam-macam metode yang dapat digunakan untuk mengenali ucapan manusia. Penelitian ini akan membahas penggunaan metode Hidden Markov Model (HMM) untuk pengenalan ucapan berbahasa Indonesia. Dalam penelitian ini, digunakan HMM diskrit untuk proses pelatihan dan pengujiannya. Berdasarkan hasil pengujian dengan menggunakan metode tersebut, kemudian dianalisa faktor keberhasilannya (tingkat ketelitiannya dalam %) berdasarkan parameter-parameter Linear Predictive Coding (LPC), parameter pitch (Fo) dan parameter energi (Eo) dalam proses mengenali suatu ucapan dalam bahasa Indonesia.
 
Prinsip kerja sistem pengenalan ucapan adalah dengan membandingkan informasi ucapan yang ada pada referensi dengan informasi ucapan yang menjadi masukan sistem pengenal ucapan tersebut.
Blok pengenalan ucapan dengan HMM dapat dibagi menjadi tiga tahap yaitu bagian depan, tahap feature extraction dan tahap sistem pengenalan HMM. Pada tahap yang pertama dilakukan pemfilteran sinyal suara dan mengubah sinyal suara analog ke digital. Tahap feature extraction adalah untuk mendapatkan parameter-parameter yang dapat merepresentasikan sinyal suara tersebut dan dilakukan analisis serta kuantisasi vektor. Tahap yang ketiga, dapat dibagi menjadi dua tugas yaitu tugas pemodelan dan tugas pengenalan . Untuk tugas pemodelan dibuatkan suatu model HMM dari data-data yang berupa sampel ucapan dari sebuah kata. HMM yang dipakai adalah densitas diskrit

Bagikan

Jangan lewatkan

Pengertian Automatic Speech Recognition (ASR), Fungsi dan Perkembangannya
4/ 5
Oleh

Subscribe via email

Suka dengan artikel di atas? Tambahkan email Anda untuk berlangganan.